山东省藻类产业信息服务平台
山东省藻类产业信息服务平台欢迎您! 天气预报: 设为首页 | 加入收藏 | 联系我们
  站内搜索:  
 
今天是: 最新公告: ·   碳氮循环会议《中国(苏州)碳氮生物地球化学循环学术论坛将于4月14日在苏州与您相约!》   ·   名单公布!2022年度中国海洋与湖沼十大科技进展评选结果揭晓!   ·   雨生红球藻及相关原料在我国的批准使用情况   ·   青岛微藻产业学会关于对《食用螺旋藻粉分级标准》团体标准制定立项的公告(青微藻字〔2023〕1号)   ·   中国藻业协会召开《螺旋藻养殖技术规范》团体标准审定会   ·   填补行业空白!农业行业标准《食用琼胶》正式获批发布!  
当前位置:首页 > 行业动态 > 最新进展
研究进展 水生所在产油海洋微拟球藻中发现一种碳汇的新分子
日期: 2022-04-28     查看次数: 221

微拟球藻

微拟球藻(Nannochloropsis)是一类属于真眼点藻纲(Eustigmatophyceae)、球形或近似球形的单细胞真核生物。与其他真核微藻显著不同的是, 该属的种类除叶绿素a外, 并不含有其他类型的叶绿素。

目前,该属有7个已定种(N. gaditana、N. salina、N. oculata、N. oceanica、N. australis、N. granulata和N. limnetica,最新的分类系统已将前两个种归至Microchloropsis)。它们具有较高的光合作用效率、生物量和油脂(三酰甘油,TAG)含量,富含二十碳五烯酸(EPA),是工业化生产EPA的优质原料,也是鱼类幼体和轮虫的饵料,已被批准作为人类新食品的原料。

近年来,由于基因组序列的公布及遗传转化体系的建立,该属的种类已成为最具潜力的工业产油模式研究藻种。

中国科学院水生生物研究所胡晗华研究员团队保存有该属的所有种类及众多株系,十多年来以这些藻株为对象开展了系列基础研究。他们首先在所有6个海洋种类中建立起了基于PCR产物的高效遗传转化系统(Bioscience, iotechnology, and Biochemistry, 2014)及基于RNA干扰的基因敲降体系(Plant Journal, 2017),并通过多年努力在该属中唯一的一个淡水藻——湖泊微拟球藻(N. limnetica)中利用化学预处理的方式实现了基于电穿孔的高效遗传转化(World Journal of Microbiology and Biotechnology, 201913)。海洋微拟球藻

海洋微拟球藻(N. oceanica)是该属中最为常用的一个模式产油藻种,它的高油含量与基因组中含有多达13个参与TAG合成的二酰甘油酰基转移酶(DGAT)有关;此外,它的基因组还编码一个磷脂:二酰甘油酰基转移酶(PDAT),也能催化合成TAG。与DGAT以酰基辅酶A作为酰基供体不同,PDAT通常依赖极性脂作为酰基供体合成TAG

对酵母、莱茵衣藻和拟南芥等模式生物的研究表明,细胞内PDATDGAT的功能在进化上可能是保守的,PDAT主要在非胁迫下起作用,而DGAT在胁迫下起作用。海洋微拟球藻含有分别在胁迫和非胁迫下起作用的DGAT,它的PDAT在脂质调控方面扮演什么角色呢?

研究进展

近日,该研究团队以海洋微拟球藻为对象,揭示了PDAT在调控脂质代谢、汇集细胞内碳流方面的重要作用,并发现在胁迫条件下细胞合成一种用于替代TAG的新的碳储存分子——低不饱和酰基磷脂酰乙醇胺。

基于系统进化分析发现,微拟球藻PDATNoPDAT)与其他光合生物的PDAT存在较远的亲缘关系,精细定位发现该蛋白质定于叶绿体最外一层膜——叶绿体内质网膜(二次内共生中来自于寄主内膜),也暗示NoPDAT与其他光合生物可能在功能上存在差异。

通过对NoPDAT过量表达、敲降藻株的表型分析发现,NoPDAT对细胞内TAG积累的贡献至少占30%(图1),并且其功能的缺失并没有引发调控任一DGAT的补偿机制。

1 NoPDAT细胞定位(A,绿色和红色荧光分别为NoPDAT-eGFP融合表达蛋白与叶绿体信号)、NoPDAT敲降导致的中性脂减少(B)及总脂肪酸(TFA)和TAG含量变化(C

研究人员还发现,NoPDAT的突变导致了细胞内一类新的磷脂酰乙醇胺(PE)的大量积累,这类特殊的PE与细胞内富含多不饱和脂肪酸(C20:4和C20:5)的功能性PE不同,它们的脂酰基是C16:0、C16:1或C18:1等低不饱和脂肪酸,特称为“LU-PE”。

细胞内LU-PE的含量还与培养的CO2浓度显著正相关。过量表达或/和敲降与PE合成和降解路径所有相关基因均检测不到LU-PE的积累,提示LU-PE的积累可能仅受NoPDAT调控。此外,NoPDAT突变还激活细胞合成缩醛磷脂(PME),其含量也与CO2浓度显著正相关。

这些结果表明,NoPDAT突变导致的TAG合成受阻,将使得细胞内的碳流向LU-PE及缩醛磷脂,尤其在高浓度CO2条件下LU-PE将替代TAG成为细胞内主要的碳汇(图2)。

NoPDAT调控海洋微拟球藻细胞脂质代谢的模式图

缩醛磷脂是一种存在于几乎所有人类组织的特殊醚磷脂,在大脑里含量最高,它的不足与阿尔茨海默症等老年疾病有着密切的关联。以前的研究认为光合生物不能合成这种磷脂。该研究的新发现为实现使用微藻商业化生产缩醛磷脂提供一种可能途径。目前已被授权了一项题为“一种可提高微藻缩醛磷脂含量的方法及RNA干扰片段”的发明专利。

研究团队及项目资助

本研究是在胡晗华研究员主持的国家自然科学基金(41976119)和重大研究计划(91751117)等项目的资助下,主要由水生所的研究人员完成。北京大学、中国农科院油料作物研究所、法国格勒诺布尔阿尔卑斯大学和美国马里兰大学的研究人员参与了部分研究工作。

相关研究成果以PDAT regulates PE as transient carbon sink alternative to triacylglycerol in Nannochloropsis”为题发表在Plant Physiology杂志上,文章链接为https://academic.oup.com/plphys/advance article/doi/10.1093/plphys/kiac160/6564233?login=true.

 

山东省藻类产业信息服务平台
平台简介   |    法律声明   |    网站地图   |    隐私与安全   |    常见问题解答   |    联系我们
版权所有:山东省农业科学院生物技术研究中心
地址: 济南市工业北路202号 邮 编:250100 鲁ICP备18034575号-1